Logic and Smart Contracts

Robert Kowalski, Imperial College London
Miguel Calejo, Interprolog.com
Fariba Sadri, Imperial College London

Outline

Imperative languages for
smart contracts

Logic for
legal documents

Combining logical and imperative semantics for
smart contracts

Artif Intell Law @ CrossMark
https://doi.org/10.1007/s10506-018-9223-3

On legal contracts, imperative and declarative smart
contracts, and blockchain systems

- . - . -~ . 2 r ae . _‘
Guido Governatori' « Florian Idelberger” + Zoran Milosevic” -
. . 1 e . 2 . e w4
Regis Riveret 0+ Giovanni Sartor” « Xiwei Xu

The term ‘smart contract’ was initially proposed in the early 90s for e-commerce
applications (Szabo 1997) but has recently been widely used in the context of
distributed ledger technologies and in particular blockchain technologies

In this context, a smart contract is any self-executing program running
in the distributed ledger environment, and it is often meant to implement
automated transactions agreed by the parties....

While not every smart contract has legal significance, many smart contracts are
linked to legal contracts, namely with agreements meant to have legal effect.

LUXLOGAI 2018: LUXEMBOURG LOGIC FOR AI SUMMIT

LuxLogAI | RuleML+RR | GCAI | RW Summer School | DecisionCAMP | Deduktionstreffen | MIREL

DECISIONCAMP ON MONDAY, SEPTEMBER 17TH

Dan Selman and Jerome Simeon
Accord Project for Smart Legal Contracts

Bas Janssen and Stijn van Dooremalen
Smart contracts from legal text: interpretation, analysis and modelling !!

Thursday, September 20th

16:00-17:30 Session 35: Tutorial: LegalRuleML (RuleML+RR)
Monica Palmirani (Bologna), Guido Governatori (Data61/CSIRO).

Step by step towards creating a safe smart contract:
essons and insights from a cryptocurrency lab

K Delmolino, M Arnett, A Kosba, A Miller... - ... Conference on
Financial ..., 2016 — Springer

... pitfalls in programming safe smart contracts. The student is
presented with the buggy version of the contract and asked to
fix the bugs in a step-by-step, guided manner.

(Cited by 11@Related articles All 11 versions

https://link.springer.com/chapter/10.1007/978-3-662-53357-4_6
https://link.springer.com/chapter/10.1007/978-3-662-53357-4_6
https://scholar.google.co.uk/citations?user=4KmaeeUAAAAJ&hl=en&oi=sra
https://scholar.google.co.uk/scholar?cites=18024996366658821357&as_sdt=2005&sciodt=0,5&hl=en
https://scholar.google.co.uk/scholar?q=related:7dxn6LGmJfoJ:scholar.google.com/&hl=en&as_sdt=0,5
https://scholar.google.co.uk/scholar?cluster=18024996366658821357&hl=en&as_sdt=0,5

Rock—paper—scissors

From Wikipedia, the free encyclopedia Scissors

beats paper

Rock—paper—scissors is
a zero-sum game
played between two people.

Each player simultaneously forms
one of three shapes
with an outstretched hand:

b
rock &
paper _r
scissors &

19 else:

20 return(-1)

21 def finalize():

22 p0 = player[0].choice
23 pl = player[1].choice

24 # If player 0 wins

25 if check_winner[p0] [p1] ==

26 send(0,player[0] .address, reward)
27 return(0)

28 # If player 1 wins

29 elif check_winner[p0O] [p1] == 1:

30 send (0,player[1] .address, reward)
31 return(1)

32 # If no one wins

33 else:

34 send(0,player (0] .address, reward/2)
35 send(0,player[1] .address, reward/2)
36 return(2)

Figure 3: Pitfalls in smart contract design. This buggy contract illustrates a few pitfalls:
Pitfall 1 (Lines 19 and 20): If a third player attempts to join the contract, his money effectively
vanishes into a blackhole.

A typical smart contract is written in an imperative programming language with
condition-action rules (sometimes called “conditional logic”).

accordproject.org

Accord Project

a consortium of lawyers and organizations,
developing a “functional programming language”, Ergo

“for the formation and execution of smart legal contracts
in a blockchain-agnostic standard implementation”.

accordproject.org

Accord Project

Specification

The Late Delivery And Penalty clause in the typical legal contract
looks like this:

Late Delivery and Penalty. In case of delayed delivery except for
Force Majeure cases, the Seller shall pay to the Buyer for every 2
weeks of delay penalty amounting to 10.5% of total value of the
Equipment whose delivery has been delayed. Any fractional part
of a week is to be considered a full week. The total amount of
penalty shall not, however, exceed 55% of the total value of the
Equipment involved in late delivery. If the delay is more than 10
weeks, the Buyer is entitled to terminate this Contract.

namespace org.accordproject.latedeliveryandpenalty
import org.accordproject.common.*
import org.accordproject.latedeliveryandpenalty.*
// Declare a contract over a template model
contract LateDeliveryAndPenalty over TemplateModel {
// Clause checking for late delivery and calculating penalty
clause latedeliveryandpenalty(request : LateDeliveryAndPenaltyRequest) : LateDeliveryAndPenaltyResponse throws Error {
// Guard against calling late delivery clause too early
define variable agreed = request.agreedDelivery;
enforce momentlsBefore(agreed,now()) else
throw new Error{ message : "Cannot exercise late delivery before delivery date" }
// Guard against force majeure
enforce !contract.forceMajeure or !request.forceMajeure else
return new LateDeliveryAndPenaltyResponse{
penalty: 0.0,
buyerMayTerminate: true

}

// Calculate the time difference between current date and agreed upon date
define variable diff = momentDiffDays(now,agreed);
// Penalty formula
define variable penalty =
(diff / contract.penaltyDuration.amount) * contract.penaltyPercentage/100.0 * request.goodsValue;
// Penalty may be capped
define variable capped = min([penalty, contract.capPercentage/100.0 * request.goodsValue]);
// Return the response with the penalty and termination determination
return new LateDeliveryAndPenaltyResponse{
penalty: capped,
buyerMayTerminate: diff > contract.termination.amount

R

O =R VORKING
2 I\ PAPER

OFFICE OF FINANCIAL RESEARCH

15-04 | March 26, 2015
Revised March 27, 2017

Contract as Automaton: The Computational
Representation of Financial Agreements

Key Messages

Mark D. Flood
Office of Financial Research

e Aciou Bt toasiiry:ariv e Financial contracts are structured internally as
state-transition systems.

Oliver R. Goodenough
Office of Financial Research and Vermont Law School

oliver.goodenough@ofr.treasury.gov e Discrete finite automata (DFA) are an
ogoodenough@vermontlaw.edu . .
adequate formalism to represent this structure
as finite sets of states, events, and transitions.

11

Agreement

This loan agreement dated June 1, 2014, by and between Lender Bank Co. (“Lender”) and
Barrower Corp. (Borrower), will set out the terms under which Lender will extend credit in the
principal amount of $1,000 to Borrower with an un-compounded Interest rate of 5% per annum,
included in the spedified payment structure.

lTheloan

At the request of Borrower, to be given on June 1, 2014, Lender will advance $1,000 to Borrower
no later than June 2, 2014. If Borrower does not make such a request, this agreement will
terminate.

2 Repayment
Subject to the other terms of this agreement, Borrower will repay the loan in the following

payments:
(a) Payment 1, due June 1, 2015, in the amount of $550, representing a payment of $500 as
half of the principal and interest in the amount of $50.
(b) Payment 2, due June 1, 2016, In the amount of $525, representing a payment of $500 as
the remaining half of the principal and interest in the amount of $25.

3. Representations and Warranties

The Borrower represents and warrants, at the execution of this agreement, at the request for
the advance of funds and at all times any repayment amount shall be outstanding, the
Borrower’s assets shall exceed Its labilities as determined under an application of the FASB rules

of accounting.

4 _Covenants:
The Borrower covenants that at the execution of this agreement, at the request for the advance

of funds and at all times any repayment amount shall be outstanding it will make timely payment
of all state and federal taxes as and when due.

3. Events of Defaylt
The Borrower will be in default under this agreement upon the occurrence of any of the

following events or conditions, provided they shall remain uncured within a penod of two days
after notice Is given to Borrower by Lender of their occurrence (such an uncured event an "Event
of Default™):

(a) Borrower shall fail to make timely payment of any amount due to Lender hereunder;

(b) Any of the representation or warranties of Borrower under this agreement shall prove
untrue;

(c) Borrower shall fall to perform any of its covenants under this agreement,
(d) Borrower shall file for bankruptcy or insolvency under any applicable federal or state law,

A default will be cured by the Borrower (1) remedying the potential event of default and (4)
giving effective notice of such remedy to the Lender. In the event of multiple events of default,

12

'-

-

ol
= cmm> |\ CEm
SRETS=E

Figure 1: Graphical Representation of the Deterministic Finite Automaton (DFA) for the Streamlined
Contract

13

Outline

Logic for
legal documents

Allen, Layman E.

Professor Emeritus of Law /‘L :

808 Legal Research
734.764.9339

E-mail laymanal@umich.edu ' % E‘

Layman E. Allen has been a pioneer in the use of
mathematical logic as a tool of analysis in law as well as
in the use of computers in the field of legal research. He

Symbolic logic: a razor-edged tool for drafting and interpreting legal documents,
Yale Law J. 66 (1957) 833—-879.

15

Allen & Saxon (1984)

"The University may terminate this lease when the Lessee, having
made application and executed this lease in advance of enrollment, is
not eligible to enroll or fails to enroll in the University or leaves the
University at any time prior to the expiration of this lease, or for
violation of any provisions of this lease, or for violation of any
University regulation relative to Resident Halls, or for health reasons,
by providing the student with written notice of this termination 30
days prior to the effective time of termination; unless life, limb, or
property would be jeopardized, the Lessee engages in the sales or
purchase of controlled substances in violation of federal, state or local
law, or the Lessee is no longer enrolled as a student, or the Lessee
engages in the use or possession of firearms, explosives, inflammable
liquids, fireworks, or other dangerous weapons within the building, or
turns in a false alarm, in which cases a maximum of 24 hours notice
would be sufficient".

The clause consists of a single sentence
with the ambiguous form:

Aif Al and A2 or A3 or AA or A5 or A6 or A7
unl ess Bl or B2 or B3 or B4 or B5 in which cases B.

Allen & Saxon (1984) identify approximately 80 questions
to disambiguate between all possible interpretations.

They conclude that the intended interpretation is:

((A1F((AL W (A2 ®RA3)) ®RAA RAS ®RA6 RA7))
iFnor (Bl B2 *B3 *B4 x=B5))

AD (1F (Bl ®*B2 ®*B3 =*B4 =xB5) mnenB).

AD (1ENnor (Bl rB2 »*B3 =*B4 =B5) mennor B

c. 61

ELIZABETH 11

British Nationality
Act 1981

1981 CHAPTER 61

An Act to make fresh provision about citizenship and
nationality, and to amend the Immigration Act 1971
as regards the right of abode in the United Kingdom.

[30th October 1981]
E IT ENACTED by the Queen’s most Excellent Majesty, by and
B with the advice and consent of the Lords Spiritual and

Temporal, and Commons, in this present Parliament
assembled, and by the authority of the same, as follows:—

ParT 1

BriTisH CITIZENSHIP

Acquisttion after commencement

L—} A person born in the United Kingdom after com- Acqui
mencement shall be a British citizen if at the time of the birth by birth
his father or mother is— adoplion.
(@) a British citizen ; or

(h) settled in the United Kingdom.

(2) A new-born Infant WIG, ATGT commencement, is found
abandoned in the United Kingdom shall, unless the contrary
is shown, be deemed for the purposes of subsection (1)—

(@) to have been born in the United Kingdom after com-
mencement ; and
(b) to have been born to a parent who at the time of

the birth was a British citizen or settled in the United
Kingdom.

The British Nationality Act as a logic program. 1986
Sergot, Sadri, Kowalski, Kriwaczek, Hammond. and Cory
Communications of the ACM, 29(5), pp.370-386.

English Logic Program

1.-(1) A person born in the X acquires british citizenship by
United Kingdom after subsection 1.1 at time T
commencement shall be a if XisbornintheukattimeT
British citizen and T is after commencement

if at the time of the birth his ~ and Y is father of X or

father or mother is Y is mother of X

(a) a British citizen; or and Y is a british citizen at time T or
(b) settled in the United Y is settled in the united

Kingdom. kingdom at time T.

The University of Michigan lease termination clause
as a logic program

Aif Al and A2 and not excepti on.
Aif Al and A3 and not excepti on.
Aif A4 and not exception.

A if A5 and not exception.

Aif A6 and not exception.

A if A7 and not exception.
exception if Bl.

exception i f B2.

exception i f B3.

exception i f B4.

exception if B5.

Bif exception.

Al, Logic and Law — State of the Art — notable examples

Defeasible deontic logic - related to LegalRuleML.
Legal Specification Protocol working group.
Accord Project, developing the Ergo language.
Contract Definition Language, at Stanford.

Ergo of Coherent Knowledge.

Legalese developing the L4 language.

Neota “Logic”.

Objects, Logic and English (OLE)

Outline

Combining logical and imperative semantics for
smart contracts.

Al, Logic and smart contracts — next steps

On legal contracts, imperative and declarative smart
contracts, and blockchain systems

- . - . nl . 2 r F o ‘l
Guido Governatori' + Florian Idelberger” + Zoran Milosevic® -
: — l e . 1 2 . . r 4
Regis Riveret ¢+ Giovanni Sartor” « Xiwei Xu

To sum up our comparison of imperative and declarative smart contracts, the
declarative approach has significant advantages over its imperative counterpart.

However, it is arguable that a full representation of a smart contract has to
explicitly establish and link the normative effects (rights, obligation, transfers of
entitlement) resulting from the contract with the procedure for implementing
these rights and obligations through the computational actions performed by
the contract, in the given infrastructure.

Hence, a hybrid approach combining imperative and declarative components
would help to bridge the gap between smart contracts and their legal
counterparts.

23

& C' | @ Ips.doc.ic.ac.uk

Imperial College Department of Computing
London

LPS reactive logic

Logic Production Systems ru |e p rog Ffam
/ clause

LPS aims to close the gap betéeen logical and imperative computer langdages,

by performing actions to generate models to make gééPof the logical form

@tecedent then consequent true.

Model generation serves as a global imperative,
which generates commands to make consequents true
whenever agntecedents become true.

LPS also includes beliefs'of the logical forn@clusion if condit@
In addition to theTr*IUgifal interpretation,
beliefs also have an imperative interpretation as procedures,
which make or determine whether a conclusion is true

by making or determining whether the conditions are true.

24

Attributing Mental Attitudes to Social Entities:
Constitutive Rules are Beliefs,
Regulative Rules are Goals

Guido Boella! and Leendert van der Torre?

! Dipartimento di Informatica - Universita di Torino- Italy. E-mail: guido@di.unito.it
2 CWI Amsterdam and TU Delft - The Netherlands. E-mail: torre@cwi.nl

Abstract. In this paper, we propose a model of constitutive and regu-
lative norms in a logical multiagent framework. We analyze the relation-
ship between these two types of rules and explain similarities between
them, using the metaphor of considering social entities - like normative
systems, groyps OIS - as agels ibuting them

constitutive norms expressing “counts-as” relations are modelled as the
beliefs of social entities, regulative norms, like obligations, prohibitions
vermissions, are modelled as their goals.

2004. Proceedings of Collective Intentionality Collint, 4.

25

Goals and Beliefs: It can be hard to tell the difference

Wason selection task

From Wikipedia, the free encyclopedia

Each card has a number on one side, and a patch of color &~

on the other. Which card or cards must be turned over to test
the idea that if a card shows an even number on one face, then

its opposite face_is red?

Each card has an age on one side, and a drink on the other. o
Which card(s) must be turned over to test the idea that if you

are drinking alcohol then you(must ?e}over 187

26

@SWISH with LPS Filew Editv Examplesv Help~

& bankTransfer @ IpsExamples =N @ Example programs
slallalv @ Prolog tutorials

- & SWISH tutorials

Welcome to LPS On : @ Usage statistics

{& Example programs
@ Prolog tutorials
{& SWISH tutorials

This notebook gives an overview of some LPS examp

» Fire In both of these examples, there are two w
or by escaping from it. The order in which the tv
order in which they are tried. The preferred way
fire, which terminates the fire. In the first examp & Usage statistics
happens if you change the order of the two clau
two fires caused by igniting a flammable object. {g First Steps with LPS
made more interesting) by the causal laws that @ LPS examples
eliminate a fire.

o Simple fire
o Recurrent fire

Inating it,
iines the
iting the

t what
there are
(and

er to

L]
8]

goals: reactive rules

beliefs goals: constraints

Filew Edit~ Examples ~ Help~
Contracts

@) /&\ bankTransfer ES
4 Timeli
5 initially balance(bob, @), balance(fapiba, 100). gotimeling).
6 observe transfer(fariba, bob, 10) imeline =
z 1 2 3 4 5
8 transfer(fariba, bob,
9 balance(bob, A), A >= 1@ Events ® transfer(fariba,bob,10)
19 transfer(bob, fariba, 10). '
a1 balance(A,B) ‘ bob, 10 bob,20
1 transfer(bob, fariba, X), T— e——
13 balance(fariba, A), A >= ‘fariba,QC fariba,8(
14 e— R~
e bob0 bob,0 bob, 10
srer(F,T,A) updates 0ld to New in ba e — E——
19" Naw 13030+ fariba, 1€ fariba, 1C fariba,9C
ansfer(F,T,A) updates 0ld to New in balan _ L N NS
19 is 0l1d - : .
- A— Actions o transfer(fariba,bo
21 nster(From, To, Amount), balance —
transfer(From, Tol, Amountl),
£ 13 F To2, Am t2 Tol \=To2. ;
ranster(From, 162, Amoanta), ol \eTa ¢ transfer(bob,fariba,10) @
transfer(Froml, To, Amountl),
;E; nsfer(From2, To, Amount2), Froml do(TiReline):

28

B S "

Timeline =

4 1 2 3 4 5 6 7 8 9 10 1
Events | ® transfer(fariba,bob,10)
balancalA6) bob,10 fariba,80 fariba, 70 fariba,60 fariba,50 [
fariba,90 bob,20 bob,30 bob,40 bob,50 ‘
’ bob,0 fariba,100 bob,10 fariba,80 bob,30
’ fariba,100 bob,0 fariba,90 bob,20 fariba,70
Actions | ® transfer(fariba,bob,20) ® transfer(bob,fariba,10) ® transfer(fariba,bob,2(
® transfer(bob,fariba,10) ® transfer(fariba,bob,20)
@ transfer(bob,fariba,10) e transfer(fariba,bob,20) @ transfer(bob,fariba,10)
| I 2 3 4 5 6 7 8 9 10 11
go(Timeline). ﬂ
Examplesa | Historya | Solutionsa () table results m

29

Animation in LPS

Logical File = Editv Examples~ Help~

Contracts

@ A bankTransfer s

W 00 N O U b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

initially balance(bob, @), balance(fariba, 1090).
observe transfer(fariba, bob, 10) from 1 to 2.
if transfer(fariba, bob, X),

balance(bob, A), A >= 1@
then transfer(bob, fariba, 18).
if transfer(bob, fariba, X),

balance(fariba, A), A >= 20
then transfer(fariba, bob, 20).

transfer(F,T,A) updates 0ld to New in balance(T, 01d)
if New is 01d + A.

transfer(F,T,A) updates 0ld to New in balance(F, 01ld)
if New is 0ld - A.

false transfer(From, To, Amount), balance(From, 0ld), O0ld < Amount.

false transfer(From, Tol, Amountl),

transfer(From, To2, Amount2), Tol \=To2.
false transfer(Froml, To, Amountl),

transfer(From2, To, Amount2), Froml \= From2.

ﬁ go(Timeline).

Timeline =

go(Timeline).

Crrmmanlan Llimémrm Calidiana

30

Rock-paper-scissors in LPS

Ve

10
11
12

12

14
15
16
17
18
19
20
21
22
3
24
25
26
27
28

29

beats(scissors, paper).
beats(paper, rock).

beats(rock, scissors).

initially reward(0).

observe transaction from(miguel,rock,1000) from 1 to 2.

observe transaction from(bob,paper,1000) from 1 to 2.

observe transaction from(alex,paper,1000) from 2 to 3. ¥ one player too many!
transaction from(From,Input,Wei) initiates played(From,Input).

transaction from(_Player, ,X) updates 0ld to New in reward(0ld) if New is O0ld+X.

if played(PO,Choice®) at T1, played(P1,Choicel) at T1, P@\==P1, beats(Choice®,Choicel), not gameOver at T1
then initiate gameOver from T1, reward(Prize) at T1, pay(PO,Prize) from T1l to T2.

if played(P@,Choice) at T1, played(P1,Choice) at T1l, P@ @> P1, not gameOver at T1
then initiate gameOver from T1l, reward(Prize) at T1, Half is Prize/2,
nay(P@,Half) from T1, pay(P1,Half) from T1.

nay(_,Prize) updates 0ld to New in reward(0ld) if New is Old-Prize.

false transaction from(_From, Input,Wei), Wei=<@.

false transaction from(From, Input, Wei), played(From,).
false num_players(N), N>2.

num_players(N) at T if findall(P, played(P,) at T, L), length(L,N).

) lw yuiinncinis .

mmount) .
_Total), gameOver. Rejected observations [transaction_from(alex,paper,1600)] attempting to sati:
Timeline =
-1 0 1 2 3
Events 1sactiol bob | r1
gameOver gameOver

00) from 1 to 2.
) from 1 to 2. played(A,B) miguel rock
@) from 2 to 3. ¥ one player too many!

bob,paper

tes played(From,Input).
1d to New in reward(0ld) if New is Old+ reward(A) 0 0
,Choicel) at T1, P@\==P1, beats(Choice®,¢(2000
Prize) at T1, pay(PO,Prize) from T1l to T

_ Actions pay(bob,2000)
hoice) at T1, P@ @ P1, not gameOver at -
Prize) at T1, Half is Prize/2, 2. -
T1 " go(Timeline).

rd(01d) if New is 0ld-Prize.

), Wei=<@.
), played(From,).

ed(P,) at T, L), length(L,N). Examplesa | Historya = Solutionsa

Rock-paper-scissors on Etherium blockchain

beats(scissors, paper).
beats (paper, rock).
beats(rock, scissors).

L N O U s

prolog_events ¢ transaction(latest,_ From, Input, Wei, To). 8 Generate events from the blockchain

10 e transaction(latest,From,Input,Wei,To) initiates played(From,Input,Wei) if

11 lps_my_account(To), Wei>0, not played(From,_,_).

12

13 fluents played(_Player, Choice,_Value), gameOver.

14

15 reward(R) at T if

16 balance(V) at T,

17 R is round(v*0.9). & keep 10%

18

19 balance(B) at T if

20 findall(v,played(_,_,V) at T,L), sum list(L,B).

21

22 num_players(N) at T if

23 findall(P, played(P,_,_) at T, L), length(L,N).

24

25 false num players(N), N>2.

26

27 pay(Player,Prize) from Tl to T3 if 8 plan / macro action on the blockchain

28 lps_my account(Us),

29 e _sendTransaction(Us,Player,Prize,PaymentTx) from Tl to T2,

30 e_existsTransactionReceipt(PaymentTx) at T3.

31

32 if played(P0,Choice0,_) at T1, played(Pl,Choicel,) at T1l, P0\==Pl, beats(Choice0,Choicel), not gameOver at Tl
33 then initiate gameOver from Tl, reward(Prize) at T1l, pay(PO,Prize) from Tl to T2.
34

35 if played(P0,Choice,_) at T1l, played(Pl,Choice,_) at T1l, PO €> Pl, not gameOver at Tl

36

then initiate gameOver from T1, reward(Prize) at Tl1l, Half is Prize/2, pay(PO,Half) from Tl1l, pay(Pl,Half) from Tl.

June 26, 2018 http://logicaB®ntracts.com

& C @ Notsecure | demo.logicalcontracts.com/p/Ballot.pl
Logical Filew Editv Examples~ Help~
Contracts
{:9 Ballot &=
6 events
7 ballot(_Chairman, _Proposals), giveRightToVote(_Chairman, _Voter),
8 delegate(_FromVoter, _ToVoter), vote(_Voter, _Candidate).
S
18 fluents chairman(_Chairman), voter(_Voter, _Weight), voted(_Voter, _Candida
11 delegateOf(_Voter,_ D), voteCount(_Candidate, _Votes).
12
13 observe ballot(chair, [trump, clinton]) from 1 to 2.
14 observe giveRightToVote(chair, miguel),
15 giveRightToVote(chair, fariba),
16 giveRightToVote(chair, bob), giveRightToVote(chair, jacinto) from 3 to
17 observe delegate(bob, miguel) from 4 to 5.

18
19
20
21
22
23
24
25
26
27

observe vote(miguel, clinton) from 5 to 6.
observe delegate(jacinto,bob) from 6 to 7.
observe delegate(fariba, miguel) from 7 to 8.

ballot(_Chairman, Proposals) initiates voteCount(Candidate, ©) if
member (Candidate, Proposals).

ballot(Chairman, _Proposals) initiates voter(Chairman,1).

ballot(Chairman, _Proposals) initiates chairman(Chairman).

% the ballot 1is new:

Se:
®
' voter(A,B) l_n,
chair,1
fariba,1
bob,1
jacinto,1
miguel
b
Actions
1 2 3 4

34

The Accord Project delayed delivery example

41 initially penalty(mydelivery, ©.0).
42 deliver(Order) initiates delivered(Order)J

44 end_of day(Date2) updates 0ld to New in penalty(Order, 01d) if
45 latest_delivery(Order, Datel),

46 not delivered(Order),
47 real date_add(Datel,Delay,Date2),
48 not force_majeure(_),
49 not terminated(Order),

50 total_value(Order, Value),

51 penalty percentage(Order, PenaltyPercent),
52 percentage_cap(Order, CapPercent),

53 New is PenaltyPercent*Value*(Delay+1l),

54 Cap is CapPercent*Value,

55 New =< Cap.

35

40
a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

latest_delivery(mydelivery, 2018/4/1).
total_value(mydelivery, 100).
penalty_percentage(mydelivery, ©.20).
percentage_cap(mydelivery, ©.50).

observe deliver(mydelivery)
at'2018-04-04T715:00".

end_of day(Date2) updates 0ld to New i
hatest_delivery(Order, Datel),
not delivered(Order),
real_date_add(Datel,Delay,Date2),
not force_majeure(_),
not terminated(Order),
total_value(Order, Value),
penalty_percentage(Order, PenaltyPe
percentage_cap(Order, CapPercent),
New is PenaltyPercent*Value*(Delay+
Cap is CapPercent*Value,
New =< Cabp.

Timeline =

Events

delivered(A)

penalty(A,B) mydelivery,O-O'

mydelivery,ZO.i
2

5 6

@ deliver(mydelivery)

mydelivery

’ mydelivery,40.0

3

go(Timeline).

36

The loan agreement embedded in a SWISH notebook

The FG and LPS representations employ a similar, "more precise" approach to the representation of violable obligations,

If an obligation is violated,
then some associated suboptimal state of affairs,
penalty, remedy or new obligation arises.

Although the first sentence of clause 1 expresses an obligation, nowhere in the contract is there any mention of a remed)
however, require an explicit representation of a remedy, or at least some representation of the less than ideal resulting st
in which the end of the day on June 1 2014 is an event that causes the lender to be liable to litigation. We can represent:
the implicit intention of the contract that the contract terminates (correctly) if the borrower does not request the loan on th

end_of_day(2014/6/2)

initiates liable_to_litigation(lender)
if requested(borrower, 1000, 2014/6/1),
not advanced(lender, 100€0).

end_of_day(2014/6/1)|
initiates terminated
if not requested(borrower, 1000, 2014/6/1).

00 NN Oy 1 AW N

37

Adaptive Smart contracts using R3 Corda

Enabling Shift from Financial Products to Consumer Experiences
CordaCon, London 2018

Avinash Patil
Banking & Financial Services Practice
TCS
73 fluents claimAtTime(_Agent,_Resour ~ | Timeline =
74 needAtTime(_Agent,_Resourc
75 obligationAtTime(_Borrower
76 rateAtTime(_Resource,_Basi
77 1=
’8 events need(_Agent,_Resource,_Uni
79 earning(_Agent,_Unit,_Valu
30 repayment(_Agent,_Unit,_Va
31 pricingInfo(_Resource,_Bas
32
23 actions settleAcross(_AgentFrom,_A
34 transferAcross(_Agent,_Res
35 settleFrom(_AgentFrom,_Age
36 transferFrom(_Agent,_Resou Alice's World
37 settleTo(_AgentFrom,_Agent
38 transferTo(_Agent,_Resourc
39 buyFromBorrower(_Lender,_B
30 buyBackFromLenderAndRollov
1 buyBackFromLenderAndClose(
32 createObligation(_Borrower
33 updateObligation(_Borrower
D4 lenderNeedMet (_Agent,_Resc
35 borrowerNeedMet(Aegent. Ffev =i Triasrin T Saictones

38

C ’ @ Secure | https:/lps.js.org/sandbox/

|szs The LPS runtime in JS

maxTime(10).
action(transfer(From, To, Amount)).
fluent(balance(Person, Amount)).

initially([balance(bob, @), balance(fariba, 100)]).
observe(transfer(fariba, bob, 10), 1).

transfer(fariba, bob, X, T1, T2), balance(bob, A, T2), A >= 10 ->
transfer(bob, fariba, 10, T2, T3).

transfer(bob, fariba, X, T1, T2), balance(fariba, A, T2), A >= 20 ->
transfer(fariba, bob, 20, T2, T3).

Example Programs ¥

Time 1 (10 ms) 2 (11 ms) 3 (10 ms) 4 (10 ms)

Events « transfer(fariba, ...

Actions « transfer(bob, far... « transfer(fariba, ... « transfe

Fluents balance(bob, 0) balance(bob, 10) balance(bob, 0) balance(bob, 20)
balance(fariba, 100) balance(fariba, 90) balance(fariba, 100) balance(fariba, 80)

Ips.js has been extended to build a desktop application, LPS Studio, to visualise LPS programs for interactive storytelling using the Electron framework.

File Help
90 n e >
Program authored by Sam Yong. loons by icons® com, CC SY.ND 3.0

i =l @ B

Time 665

Iime 666

Time 667

Time 668

40

Conclusions

Gap between two approaches:
software engineering and formal methods
logic, Al and Law.

Need a logic that combines
goals and
beliefs.

Need a logic that combines
declarative and
imperative sentences.

The language of well-written legal documents
can be an example for the computer languages of the future.

Complementary Slides

More about smart contracts
More from the Legal Specification Protocol

More from Logic, Al and Law

More from LPS

GoLg Ie "smart contract” $ Q

All Images News Videos Books More Settings Tools

About 2,610,000 results (0.61 seconds)

Smart contracts | Smart Contract Review | solidified.io
www.solidified.io/ ¥
Join the market leader for smart contract security code audits now! Become an auditor. Audit Score.

)What Are Smart Contracts? A Beginner's Guide to Smart Contracts
https://blockgeeks.com/guides/smart-contracts/ v

As Vitalik Buterin, the 22-year-old programmer of Ethereum, explained it at a recent DC Blockchain
Summit, in a smart contract approach, an asset or currency is ...

People also search for X
smart contract use cases smart contract platforms
blockchain smart contracts pdf smart contracts insurance

real world examples of smart contracts the first smart contract platform is r3 corda

©) Smart contract - Wikipedia
https://en.wikipedia.org/wiki/Smart_contract v

A smart contract is a computer protocol intended to digitally facilitate, verify, or enforce the negotiation
43

https://blockgeeks.com/guides/smart-contracts/

Smart Contracts: The Blockchain
Technology That Will Replace Lawyers

#Beginners #Blockchain 101 #Blockchain for business #Blockchain startups

S 136 j 1K ¥ 1K

A Beginner’s Guide to Smart Contracts

The best way to describe smart contracts is to compare the
technology to a vending machine.

Ordinarily, you would go to a lawyer or a notary, pay them, and wait
while you get the document.

With smart contracts, you simply drop a bitcoin into the vending
machine (i.e. ledger), and your escrow, driver’s license, or whatever
drops into your account.

More so, smart contracts not only define the/\rules and penalties >
around an agreement in the same way that a traditional contract |
does, but also automatlcally@force those obhgat10ns>

https://blockgeeks.com/guides/smart-contracts/

Example

Suppose you rent an apartment from me. You can do this through the blockchain by
paying in cryptocurrency. You get a receipt which is held in our virtual contract; I
give you the digital entry key which comes to you by a specified date. If the key

doesn’t come on time, the blockchain releases a refund. If [send the key before the

rental date, the function holds it releasing both the fee and key to you and me
respectively when the date arrives.@ system works on the If-Then prem@nd is

—
—

witnessed by hundreds of people, so you can expect a faultless delivery. If I give you
the key, I'm sure to be paid. If you send a certain amount in bitcoins, you receive the
key. The document is automatically canceled after the time, and the code cannot be
interfered by either of us without the other knowing since all participants are

simultaneously alerted.

45

Imperative languages for
smart contracts

/ on blockchains

Distributed Ledger Technology:

beyond block chain

A report by the UK Government Chief Scientific Adviser

Smart contracts are contracts whose terms are recorded in a computer
language instead of legal language. Smart contracts can be
automatically executed by a computing system, such as a suitable
distributed ledger system. The potential benefits of smart contracts
include low contracting, enforcement, and compliance costs.

Home > Volume 2, Number 9 - 1 September 1997 > Szabo

Formalizing and Securing Relationships on Public Networks
Nick Szabo Sy

a,
.

Abstract

Smart contracts combine protocols with user interfaces to formalize and
secure relationships over computer networks.

Objectives and principles for the design of these systems are derived from
legal principles, economic theory, and theories of reliable and secure
protocols.

Similarities and differences between smart contracts and traditional
business procedures based on written contracts, controls, and static forms
are discussed,

From: Developing a Legal Specification Protocol:
Technological Considerations and Requirements

LSP Working Group
Draft of July 28, 2018

Time for a Legal Specification Protocol (LSP)

In many domains of human activity, the application of electronic
computing has made once cumbersome tasks quicker and easier.

The automation of portions of legal and regulatory processes holds the
similar promise of delivering faster and better service at lower cost.

48

From: Developing a Legal Specification Protocol:
Technological Considerations and Requirements

Interacting with Blockchain and Distributed Ledger Technology

A point of particular importance will be the ability of computational contracts and
other machine executable legal specification to interact with blockchains and other
distributed ledger technologies.

The current “smart contract” initiatives, ..., have been developed largely in the
blockchain context,

and while their use has largely been to specify relatively simple payment trigger
transactions, they have the potential for much more complex specification.

Developing a Legal Specification Protocol:
Technological Considerations and Requirements

The boom in blockchain development has included initiatives around the so-
called “smart contract.”

Although the rather grand name would seem to imply that the LSP has already
occurred, as currently employed most blockchain smart contracts are executable
scripts of relatively low contractual expressivity.

For the most part, they are single trigger links between some event or
instruction and the delivery of cryptocurrency funds from one holder to another.

As Vitalik Buterin, a leading Ethereum programmer has described it, the smart
contract sets up a conditional payment instruction in code:

“and the program runs this code and at some point it automatically validates
a condition and it automatically determines whether the asset should go to
one person or back to the other person, or whether it should be immediately
refunded to the person who sent it or some combination thereof.”

Logic for
legal documents

propositional logic - Layman Allen - 1950s
logic programming (LP) - British Nationality Act - 1980s
extensions of LP and other logics - 39 millenium

Rules and exceptions

English

40.-(2) The Secretary of State may

by order deprive a person of a citizenship status
if the Secretary of State is satisfied that
deprivation is conducive to the public

good.

40.-(4) The Secretary of State may not
make an order under subsection (2)

if he is satisfied that

the order would make the person stateless.

Logic program

The Secretary of State may by order
deprive a person of a citizenship status
if the Secretary of State is satisfied that
deprivation is conducive to

the public good

and the Secretary of State is

not satisfied that

the order would make the person
stateless.

Logic, Al and Law — what went wrong?

Lack of commercialisation,

due in part to open textured predicates,

such as “good character”, “reasonable effort”,

and the resulting apparent need for case-based reasoning.

(cured by precise definitions or human judgement)

Prolog infinite loops.
(cured by tabling in XSB, forward reasoning in Datalog and grounding in ASP).

Competition from and confusion with production systems,
e.g. Oracle Policy Management (OPM)

(cured by tabling in XSB?)

http://www.oracle.com/industries/government/pdfs/oracle-haley-enterprisepublic-sector-ds.pdf

Confessions of a production rule vendor (part 2)

Apr 2nd, 2018 by
http://haleyai. com/wordpress/2018/04/02/confe55|ons of-
a-production-rule-vendor-part-2/#more-1169

“XSB Prolog provides more powerful reasoning
than production systems.

It can handle logical inconsistences unlike theorem provers.
It is more practical and easier to use than other Prologs.

XSB Prolog is commercial, open-source.
It has been used in IBM Watson and by U.S. Customs.”

54

mailto:paul@haleyAI.com

Al, Logic and Law — Current State of the Art — selected examples

Accord Project, a consortium of lawyers and organizations, developing a
functional programming language, Ergo “for the formation and execution of
smart legal contracts in a blockchain-agnostic standard implementation”.

Legal Specification Protocol working group developing “a coordinated,
interoperable standard for embodying contracts and other legal formulations as
executable computer code”. A draft white paper highlights the use of
deterministic finite automata. In the DFA approach, all clauses of a contract
are represented in the form current state -> event -> next state.

The R3 consortium of 70 global financial institutions has a conceptual
framework, Corda, for smart contracts in finance. Corda is an alternative to
conventional blockchain systems. Smart contracts in Corda are compiled into a
Java Virtual Machine, standardising on a bytecode set, which is neutral about
the language.

Al, Logic and Law — State of the Art — notable examples

Defeasible deontic logic extends LP with defeasible rules, defeaters
and priorities. Deontic concepts are expressed by modal operators.
Related to LegalRuleML (Athan, Governatori, Palmirani, Paschke, &
Wyner. Proc. of the 11th Reasoning Web Summer School, 2015.)

Accord Project, a consortium of lawyers and organizations, using a
functional programming language, Ergo “for the formation and
execution of smart legal contracts in a blockchain-agnostic standard
implementation”.

Legal Specification Protocol working group developing “a coordinated,
interoperable standard for embodying contracts and other legal
formulations as executable computer code”. A draft white paper
highlights the use of deterministic finite automata. In the DFA
approach, all clauses of a contract are represented in the form current
State -> event -> next state.

Al, Logic and Law — State of the Art — notable examples

Contract Definition Language, part of the computable contracts
project at Stanford, used to model several U.S. Federal Acts. It uses LP
to encode legal regulations and causal laws. Deontic concepts are
encoded using meta-predicates.

Ergo of Coherent Knowledge, implemented in XSB Prolog, used in a
POC to automate US Federal Reserve Regulation W, which regulates
transactions between banks,. The automation is an extended database
of facts and legal rules, with queries that evaluate whether the facts
comply with the rules. Deontic concepts are encoded using meta-
predicates.

Legalese is a company developing the L4 language for drafting “legal
documents the way programmers develop software”. L4 is a modal
language, with modal operators for time. It aims to support formal
verification of contracts, using model checking techniques.

Al, Logic and Law — Current State of the Art — selected examples

Neota “Logic” is a commercial production rule system for legal applications.
Rules represent legal expertise, rather than legal documents.

Objects, Logic and English (OLE) is designed for “managers, legal and
financial professionals to read and write their smart contracts in a manner close

to their own professional practice using their own language”. The language
includes logical rules, transitional rules and constraints, with an English-like,
object-oriented syntax. A compiler from OLE to Solidity is being developed for
the Ethereum blockchain.

The syntax of LPS

Goals include reactive rules in First-order logic:

for all X [antecedent — there exists Y consequent]
or if antecedent then consequent.

Beliefs are clauses in logic programming form:

forall X [there exists Y conditions — conclusion]
or conclusion if conditions.

59

All humans are mortal. ——— Belief:
mortal(X) if human(X).

All humans are virtuous. Goal:
if human(X) then virtuous(X).

Psychological studies show that people have trouble
reasoning with conditionals. e.g. the Wason selection task.

60

< C ‘ @ Secure | https:/Ips.mauris.sg

Hello there!

Welcome to LPS JavaScript
Implementation Demo. Enter the LPS
source code on the right and press
"Run” to run the LPS program.

The LPS program execution currently
happens on the server-side. Browser-side
execution is possible, but will only be
demonstrated once the project becomes open

source.

Example Programs

Below are some preloaded LPS
programs that you can load and get
started.

mark
mark-hiccup
fireSimple
fireRecurrent

mapColouring

ittps://Ips.mauris.sg

Run

maxTime(10).
action(transfer(From, To, Amount)).
fluent(balance(Person, Amount)).

initially([balance(bob, @), balance(fariba, 100)]).

observe(transfer(fariba, bob, 10), 1).

|

transfer(fariba, bob, X, T1, T2), balance(bob, A, T2), A >= 10 ->
transfer(bob, fariba, 10, T2, T3).

transfer(bob, fariba, X, T1, T2), balance(fariba, A, T2), A >= 20 ->
transfer(fariba, bob, 20, T2, T3).

updates(transfer(F, T, A), balance(T, 01d), balance(T, 0ld + A)).
updates(transfer(F, T, A), balance(F, 01d), balance(F, 0ld - A)).

% <- transfer(From, To, Amount), balance(From, 0ld), 0ld < Amount.
% <- transfer(From, Tol, Amountl), transfer(From, To2, Amount2), Tol != To2.
% <- transfer(Froml, To, Amountl), transfer(From2, To, Amount2), Froml != From2.

Time | 1(0ms) 2 (5 ms) 3 (5 ms) 4 (7 ms)

Events - transfer(fariba, bob, 10)

Actions - transfer(bob, fariba, 10) - transfer(fariba, bob, 20)

Fluents balance(bob, 0) balance(bob, 10) balance(fariba, 100) balance
| balance(fariba, 90) balance(bob, 0) balanc

ogical LOGICAL Ce

Contracts = Sirr‘ialicityfin"sri%arfcdntra'cté D

Contact Us Logical Contracts Server Logical Contracts at RuleML+RR 2018

